Documentation for Modelpoison Module¶
This module provides a function for adding noise to a machine learning model's parameters, simulating data poisoning attacks. The main function allows for the injection of various types of noise into the model parameters, effectively altering them to test the model's robustness against malicious manipulations.
Function: - modelpoison: Modifies the parameters of a model by injecting noise according to a specified ratio and type of noise (e.g., Gaussian, salt, salt-and-pepper).
ModelPoisonAttack
¶
Bases: ModelAttack
Implements a model poisoning attack by modifying the received model weights during the aggregation process.
This attack introduces specific modifications to the model weights to influence the global model's behavior.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine
|
object
|
The training engine object that manages the aggregator. |
required |
attack_params
|
dict
|
Parameters for the attack, including: - poisoned_ratio (float): The ratio of model weights to be poisoned. - noise_type (str): The type of noise to introduce during the attack. |
required |
Source code in nebula/addons/attacks/model/modelpoison.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
__init__(engine, attack_params)
¶
Initializes the ModelPoisonAttack with the specified engine and parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine
|
object
|
The training engine object. |
required |
attack_params
|
dict
|
Dictionary of attack parameters. |
required |
Source code in nebula/addons/attacks/model/modelpoison.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
modelPoison(model, poisoned_ratio, noise_type='gaussian')
¶
Adds random noise to the parameters of a model for the purpose of data poisoning.
This function modifies the model's parameters by injecting noise according to the specified noise type and ratio. Various types of noise can be applied, including salt noise, Gaussian noise, and salt-and-pepper noise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
OrderedDict
|
The model's parameters organized as an |
required |
poisoned_ratio
|
float
|
The proportion of noise to apply, expressed as a fraction (0 <= poisoned_ratio <= 1). |
required |
noise_type
|
str
|
The type of noise to apply to the model parameters. Supported types are: - "salt": Applies salt noise, replacing random elements with 1. - "gaussian": Applies Gaussian-distributed additive noise. - "s&p": Applies salt-and-pepper noise, replacing random elements with either 1 or low_val. Default is "gaussian". |
'gaussian'
|
Returns:
Name | Type | Description |
---|---|---|
OrderedDict |
A new |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Notes
- If a layer's tensor is a single point (0-dimensional), it will be reshaped for processing.
- Unsupported noise types will result in an error message, and the original tensor will be retained.
Source code in nebula/addons/attacks/model/modelpoison.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
model_attack(received_weights)
¶
Applies the model poisoning attack by modifying the received model weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
received_weights
|
any
|
The aggregated model weights to be poisoned. |
required |
Returns:
Name | Type | Description |
---|---|---|
any |
The modified model weights after applying the poisoning attack. |
Source code in nebula/addons/attacks/model/modelpoison.py
116 117 118 119 120 121 122 123 124 125 126 127 128 |
|