Skip to content

factsheet

Factsheet

Source code in nebula/addons/trustworthiness/factsheet.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
class Factsheet:
    def __init__(self):
        """
        Manager class to populate the FactSheet
        """
        self.factsheet_file_nm = "factsheet.json"
        self.factsheet_template_file_nm = "factsheet_template.json"

    def populate_factsheet_pre_train(self, data, scenario_name):
        """
        Populates the factsheet with values before the training.

        Args:
            data (dict): Contains the data from the scenario.
            scenario_name (string): The name of the scenario.
        """

        factsheet_file = os.path.join(dirname, f"files/{scenario_name}/{self.factsheet_file_nm}")

        factsheet_template = os.path.join(dirname, f"configs/{self.factsheet_template_file_nm}")

        if not os.path.exists(factsheet_file):
            shutil.copyfile(factsheet_template, factsheet_file)

        with open(factsheet_file, "r+") as f:
            factsheet = {}

            try:
                factsheet = json.load(f)

                if data is not None:
                    logger.info("FactSheet: Populating factsheet with pre training metrics")

                    federation = data["federation"]
                    n_nodes = int(data["n_nodes"])
                    dataset = data["dataset"]
                    algorithm = data["model"]
                    aggregation_algorithm = data["agg_algorithm"]
                    n_rounds = int(data["rounds"])
                    attack = data["attacks"]
                    poisoned_node_percent = int(data["poisoned_node_percent"])
                    poisoned_sample_percent = int(data["poisoned_sample_percent"])
                    poisoned_noise_percent = int(data["poisoned_noise_percent"])
                    with_reputation = data["with_reputation"]
                    is_dynamic_topology = data["is_dynamic_topology"]
                    is_dynamic_aggregation = data["is_dynamic_aggregation"]
                    target_aggregation = data["target_aggregation"]

                    if attack != "No Attack" and with_reputation == True and is_dynamic_aggregation == True:
                        background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. A reputation-based defence with a dynamic aggregation based on the aggregation algorithm {target_aggregation} is used, and the trustworthiness of the project is desired."

                    elif attack != "No Attack" and with_reputation == True and is_dynamic_topology == True:
                        background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. A reputation-based defence with a dynamic topology is used, and the trustworthiness of the project is desired."

                    elif attack != "No Attack" and with_reputation == False:
                        background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. No defence mechanism is used, and the trustworthiness of the project is desired."

                    elif attack == "No Attack":
                        background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. No attacks against clients are used, and the trustworthiness of the project is desired."

                    # Set project specifications
                    factsheet["project"]["overview"] = data["scenario_title"]
                    factsheet["project"]["purpose"] = data["scenario_description"]
                    factsheet["project"]["background"] = background

                    # Set data specifications
                    factsheet["data"]["provenance"] = data["dataset"]
                    factsheet["data"]["preprocessing"] = data["topology"]

                    # Set participants
                    factsheet["participants"]["client_num"] = data["n_nodes"] or ""
                    factsheet["participants"]["sample_client_rate"] = 1
                    factsheet["participants"]["client_selector"] = ""

                    # Set configuration
                    factsheet["configuration"]["aggregation_algorithm"] = data["agg_algorithm"] or ""
                    factsheet["configuration"]["training_model"] = data["model"] or ""
                    factsheet["configuration"]["personalization"] = False
                    factsheet["configuration"]["visualization"] = True
                    factsheet["configuration"]["total_round_num"] = n_rounds

                    if poisoned_noise_percent != 0:
                        factsheet["configuration"]["differential_privacy"] = True
                        factsheet["configuration"]["dp_epsilon"] = poisoned_noise_percent
                    else:
                        factsheet["configuration"]["differential_privacy"] = False
                        factsheet["configuration"]["dp_epsilon"] = ""

                    if dataset == "MNIST" and algorithm == "MLP":
                        model = MNISTModelMLP()
                    elif dataset == "MNIST" and algorithm == "CNN":
                        model = MNISTModelCNN()
                    elif dataset == "Syscall" and algorithm == "MLP":
                        model = SyscallModelMLP()
                    else:
                        model = CIFAR10ModelCNN()

                    factsheet["configuration"]["learning_rate"] = model.get_learning_rate()
                    factsheet["configuration"]["trainable_param_num"] = model.count_parameters()
                    factsheet["configuration"]["local_update_steps"] = 1

            except JSONDecodeError as e:
                logger.warning(f"{factsheet_file} is invalid")
                logger.error(e)

            f.seek(0)
            f.truncate()
            json.dump(factsheet, f, indent=4)
            f.close()

    def populate_factsheet_post_train(self, scenario):
        """
        Populates the factsheet with values after the training.

        Args:
            scenario (object): The scenario object.
        """
        scenario_name = scenario[0]

        factsheet_file = os.path.join(dirname, f"files/{scenario_name}/{self.factsheet_file_nm}")

        logger.info("FactSheet: Populating factsheet with post training metrics")

        with open(factsheet_file, "r+") as f:
            factsheet = {}
            try:
                factsheet = json.load(f)

                dataset = factsheet["data"]["provenance"]
                model = factsheet["configuration"]["training_model"]

                actual_dir = os.getcwd()
                files_dir = f"{actual_dir}/trustworthiness/files/{scenario_name}"
                data_dir = f"{actual_dir}/trustworthiness/data/"

                models_files = glob.glob(os.path.join(files_dir, "*final_model*"))
                bytes_sent_files = glob.glob(os.path.join(files_dir, "*bytes_sent*"))
                bytes_recv_files = glob.glob(os.path.join(files_dir, "*bytes_recv*"))
                loss_files = glob.glob(os.path.join(files_dir, "*loss*"))
                accuracy_files = glob.glob(os.path.join(files_dir, "*accuracy*"))
                dataloaders_files = glob.glob(os.path.join(files_dir, "*train_loader*"))
                test_dataloader_file = f"{files_dir}/participant_1_test_loader.pk"
                train_model_file = f"{files_dir}/participant_1_train_model.pk"
                emissions_file = os.path.join(files_dir, "emissions.csv")

                # Entropy
                i = 0
                for file in dataloaders_files:
                    with open(file, "rb") as file:
                        dataloader = pickle.load(file)
                    get_entropy(i, scenario_name, dataloader)
                    i += 1

                with open(f"{files_dir}/entropy.json") as file:
                    entropy_distribution = json.load(file)

                values = np.array(list(entropy_distribution.values()))

                normalized_values = (values - np.min(values)) / (np.max(values) - np.min(values))

                avg_entropy = np.mean(normalized_values)

                factsheet["data"]["avg_entropy"] = avg_entropy

                # Set performance data
                result_avg_loss_accuracy = get_avg_loss_accuracy(loss_files, accuracy_files)
                factsheet["performance"]["test_loss_avg"] = result_avg_loss_accuracy[0]
                factsheet["performance"]["test_acc_avg"] = result_avg_loss_accuracy[1]
                test_acc_cv = get_cv(std=result_avg_loss_accuracy[2], mean=result_avg_loss_accuracy[1])
                factsheet["fairness"]["test_acc_cv"] = 1 if test_acc_cv > 1 else test_acc_cv

                factsheet["system"]["avg_time_minutes"] = get_elapsed_time(scenario)
                factsheet["system"]["avg_model_size"] = get_bytes_models(models_files)

                result_bytes_sent_recv = get_bytes_sent_recv(bytes_sent_files, bytes_recv_files)
                factsheet["system"]["total_upload_bytes"] = result_bytes_sent_recv[0]
                factsheet["system"]["total_download_bytes"] = result_bytes_sent_recv[1]
                factsheet["system"]["avg_upload_bytes"] = result_bytes_sent_recv[2]
                factsheet["system"]["avg_download_bytes"] = result_bytes_sent_recv[3]

                factsheet["fairness"]["selection_cv"] = 1

                count_class_samples(scenario_name, dataloaders_files)

                with open(f"{files_dir}/count_class.json") as file:
                    class_distribution = json.load(file)

                class_samples_sizes = [x for x in class_distribution.values()]
                class_imbalance = get_cv(list=class_samples_sizes)
                factsheet["fairness"]["class_imbalance"] = 1 if class_imbalance > 1 else class_imbalance

                with open(train_model_file, "rb") as file:
                    lightning_model = pickle.load(file)

                if dataset == "MNIST" and model == "MLP":
                    pytorch_model = MNISTTorchModelMLP()
                elif dataset == "MNIST" and model == "CNN":
                    pytorch_model = MNISTTorchModelCNN()
                elif dataset == "Syscall" and model == "MLP":
                    pytorch_model = SyscallTorchModelMLP()
                else:
                    pytorch_model = CIFAR10TorchModelCNN()

                pytorch_model.load_state_dict(lightning_model.state_dict())

                with open(test_dataloader_file, "rb") as file:
                    test_dataloader = pickle.load(file)

                test_sample = next(iter(test_dataloader))

                lr = factsheet["configuration"]["learning_rate"]
                value_clever = get_clever_score(pytorch_model, test_sample, 10, lr)

                factsheet["performance"]["test_clever"] = 1 if value_clever > 1 else value_clever

                feature_importance = get_feature_importance_cv(pytorch_model, test_sample)

                factsheet["performance"]["test_feature_importance_cv"] = (
                    1 if feature_importance > 1 else feature_importance
                )

                # Set emissions metrics
                emissions = None if emissions_file is None else read_csv(emissions_file)
                if emissions is not None:
                    logger.info("FactSheet: Populating emissions")
                    cpu_spez_df = pd.read_csv(os.path.join(data_dir, "CPU_benchmarks_v4.csv"), header=0)
                    emissions["CPU_model"] = (
                        emissions["CPU_model"].astype(str).str.replace(r"\([^)]*\)", "", regex=True)
                    )
                    emissions["CPU_model"] = emissions["CPU_model"].astype(str).str.replace(r" CPU", "", regex=True)
                    emissions["GPU_model"] = emissions["GPU_model"].astype(str).str.replace(r"[0-9] x ", "", regex=True)
                    emissions = pd.merge(
                        emissions,
                        cpu_spez_df[["cpuName", "powerPerf"]],
                        left_on="CPU_model",
                        right_on="cpuName",
                        how="left",
                    )
                    gpu_spez_df = pd.read_csv(os.path.join(data_dir, "GPU_benchmarks_v7.csv"), header=0)
                    emissions = pd.merge(
                        emissions,
                        gpu_spez_df[["gpuName", "powerPerformance"]],
                        left_on="GPU_model",
                        right_on="gpuName",
                        how="left",
                    )

                    emissions.drop("cpuName", axis=1, inplace=True)
                    emissions.drop("gpuName", axis=1, inplace=True)
                    emissions["powerPerf"] = emissions["powerPerf"].astype(float)
                    emissions["powerPerformance"] = emissions["powerPerformance"].astype(float)
                    client_emissions = emissions.loc[emissions["role"] == "client"]
                    client_avg_carbon_intensity = round(client_emissions["energy_grid"].mean(), 2)
                    factsheet["sustainability"]["avg_carbon_intensity_clients"] = check_field_filled(
                        factsheet,
                        ["sustainability", "avg_carbon_intensity_clients"],
                        client_avg_carbon_intensity,
                        "",
                    )
                    factsheet["sustainability"]["emissions_training"] = check_field_filled(
                        factsheet,
                        ["sustainability", "emissions_training"],
                        client_emissions["emissions"].sum(),
                        "",
                    )
                    factsheet["participants"]["avg_dataset_size"] = check_field_filled(
                        factsheet,
                        ["participants", "avg_dataset_size"],
                        client_emissions["sample_size"].mean(),
                        "",
                    )

                    server_emissions = emissions.loc[emissions["role"] == "server"]
                    server_avg_carbon_intensity = round(server_emissions["energy_grid"].mean(), 2)
                    factsheet["sustainability"]["avg_carbon_intensity_server"] = check_field_filled(
                        factsheet,
                        ["sustainability", "avg_carbon_intensity_server"],
                        server_avg_carbon_intensity,
                        "",
                    )
                    factsheet["sustainability"]["emissions_aggregation"] = check_field_filled(
                        factsheet,
                        ["sustainability", "emissions_aggregation"],
                        server_emissions["emissions"].sum(),
                        "",
                    )
                    GPU_powerperf = (server_emissions.loc[server_emissions["GPU_used"] == True])["powerPerformance"]
                    CPU_powerperf = (server_emissions.loc[server_emissions["CPU_used"] == True])["powerPerf"]
                    server_power_performance = round(pd.concat([GPU_powerperf, CPU_powerperf]).mean(), 2)
                    factsheet["sustainability"]["avg_power_performance_server"] = check_field_filled(
                        factsheet,
                        ["sustainability", "avg_power_performance_server"],
                        server_power_performance,
                        "",
                    )

                    GPU_powerperf = (client_emissions.loc[client_emissions["GPU_used"] == True])["powerPerformance"]
                    CPU_powerperf = (client_emissions.loc[client_emissions["CPU_used"] == True])["powerPerf"]
                    clients_power_performance = round(pd.concat([GPU_powerperf, CPU_powerperf]).mean(), 2)
                    factsheet["sustainability"]["avg_power_performance_clients"] = clients_power_performance

                    factsheet["sustainability"]["emissions_communication_uplink"] = check_field_filled(
                        factsheet,
                        ["sustainability", "emissions_communication_uplink"],
                        factsheet["system"]["total_upload_bytes"]
                        * 2.24e-10
                        * factsheet["sustainability"]["avg_carbon_intensity_clients"],
                        "",
                    )
                    factsheet["sustainability"]["emissions_communication_downlink"] = check_field_filled(
                        factsheet,
                        ["sustainability", "emissions_communication_downlink"],
                        factsheet["system"]["total_download_bytes"]
                        * 2.24e-10
                        * factsheet["sustainability"]["avg_carbon_intensity_server"],
                        "",
                    )

            except JSONDecodeError as e:
                logger.warning(f"{factsheet_file} is invalid")
                logger.error(e)

            f.seek(0)
            f.truncate()
            json.dump(factsheet, f, indent=4)
            f.close()

__init__()

Manager class to populate the FactSheet

Source code in nebula/addons/trustworthiness/factsheet.py
31
32
33
34
35
36
def __init__(self):
    """
    Manager class to populate the FactSheet
    """
    self.factsheet_file_nm = "factsheet.json"
    self.factsheet_template_file_nm = "factsheet_template.json"

populate_factsheet_post_train(scenario)

Populates the factsheet with values after the training.

Parameters:

Name Type Description Default
scenario object

The scenario object.

required
Source code in nebula/addons/trustworthiness/factsheet.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def populate_factsheet_post_train(self, scenario):
    """
    Populates the factsheet with values after the training.

    Args:
        scenario (object): The scenario object.
    """
    scenario_name = scenario[0]

    factsheet_file = os.path.join(dirname, f"files/{scenario_name}/{self.factsheet_file_nm}")

    logger.info("FactSheet: Populating factsheet with post training metrics")

    with open(factsheet_file, "r+") as f:
        factsheet = {}
        try:
            factsheet = json.load(f)

            dataset = factsheet["data"]["provenance"]
            model = factsheet["configuration"]["training_model"]

            actual_dir = os.getcwd()
            files_dir = f"{actual_dir}/trustworthiness/files/{scenario_name}"
            data_dir = f"{actual_dir}/trustworthiness/data/"

            models_files = glob.glob(os.path.join(files_dir, "*final_model*"))
            bytes_sent_files = glob.glob(os.path.join(files_dir, "*bytes_sent*"))
            bytes_recv_files = glob.glob(os.path.join(files_dir, "*bytes_recv*"))
            loss_files = glob.glob(os.path.join(files_dir, "*loss*"))
            accuracy_files = glob.glob(os.path.join(files_dir, "*accuracy*"))
            dataloaders_files = glob.glob(os.path.join(files_dir, "*train_loader*"))
            test_dataloader_file = f"{files_dir}/participant_1_test_loader.pk"
            train_model_file = f"{files_dir}/participant_1_train_model.pk"
            emissions_file = os.path.join(files_dir, "emissions.csv")

            # Entropy
            i = 0
            for file in dataloaders_files:
                with open(file, "rb") as file:
                    dataloader = pickle.load(file)
                get_entropy(i, scenario_name, dataloader)
                i += 1

            with open(f"{files_dir}/entropy.json") as file:
                entropy_distribution = json.load(file)

            values = np.array(list(entropy_distribution.values()))

            normalized_values = (values - np.min(values)) / (np.max(values) - np.min(values))

            avg_entropy = np.mean(normalized_values)

            factsheet["data"]["avg_entropy"] = avg_entropy

            # Set performance data
            result_avg_loss_accuracy = get_avg_loss_accuracy(loss_files, accuracy_files)
            factsheet["performance"]["test_loss_avg"] = result_avg_loss_accuracy[0]
            factsheet["performance"]["test_acc_avg"] = result_avg_loss_accuracy[1]
            test_acc_cv = get_cv(std=result_avg_loss_accuracy[2], mean=result_avg_loss_accuracy[1])
            factsheet["fairness"]["test_acc_cv"] = 1 if test_acc_cv > 1 else test_acc_cv

            factsheet["system"]["avg_time_minutes"] = get_elapsed_time(scenario)
            factsheet["system"]["avg_model_size"] = get_bytes_models(models_files)

            result_bytes_sent_recv = get_bytes_sent_recv(bytes_sent_files, bytes_recv_files)
            factsheet["system"]["total_upload_bytes"] = result_bytes_sent_recv[0]
            factsheet["system"]["total_download_bytes"] = result_bytes_sent_recv[1]
            factsheet["system"]["avg_upload_bytes"] = result_bytes_sent_recv[2]
            factsheet["system"]["avg_download_bytes"] = result_bytes_sent_recv[3]

            factsheet["fairness"]["selection_cv"] = 1

            count_class_samples(scenario_name, dataloaders_files)

            with open(f"{files_dir}/count_class.json") as file:
                class_distribution = json.load(file)

            class_samples_sizes = [x for x in class_distribution.values()]
            class_imbalance = get_cv(list=class_samples_sizes)
            factsheet["fairness"]["class_imbalance"] = 1 if class_imbalance > 1 else class_imbalance

            with open(train_model_file, "rb") as file:
                lightning_model = pickle.load(file)

            if dataset == "MNIST" and model == "MLP":
                pytorch_model = MNISTTorchModelMLP()
            elif dataset == "MNIST" and model == "CNN":
                pytorch_model = MNISTTorchModelCNN()
            elif dataset == "Syscall" and model == "MLP":
                pytorch_model = SyscallTorchModelMLP()
            else:
                pytorch_model = CIFAR10TorchModelCNN()

            pytorch_model.load_state_dict(lightning_model.state_dict())

            with open(test_dataloader_file, "rb") as file:
                test_dataloader = pickle.load(file)

            test_sample = next(iter(test_dataloader))

            lr = factsheet["configuration"]["learning_rate"]
            value_clever = get_clever_score(pytorch_model, test_sample, 10, lr)

            factsheet["performance"]["test_clever"] = 1 if value_clever > 1 else value_clever

            feature_importance = get_feature_importance_cv(pytorch_model, test_sample)

            factsheet["performance"]["test_feature_importance_cv"] = (
                1 if feature_importance > 1 else feature_importance
            )

            # Set emissions metrics
            emissions = None if emissions_file is None else read_csv(emissions_file)
            if emissions is not None:
                logger.info("FactSheet: Populating emissions")
                cpu_spez_df = pd.read_csv(os.path.join(data_dir, "CPU_benchmarks_v4.csv"), header=0)
                emissions["CPU_model"] = (
                    emissions["CPU_model"].astype(str).str.replace(r"\([^)]*\)", "", regex=True)
                )
                emissions["CPU_model"] = emissions["CPU_model"].astype(str).str.replace(r" CPU", "", regex=True)
                emissions["GPU_model"] = emissions["GPU_model"].astype(str).str.replace(r"[0-9] x ", "", regex=True)
                emissions = pd.merge(
                    emissions,
                    cpu_spez_df[["cpuName", "powerPerf"]],
                    left_on="CPU_model",
                    right_on="cpuName",
                    how="left",
                )
                gpu_spez_df = pd.read_csv(os.path.join(data_dir, "GPU_benchmarks_v7.csv"), header=0)
                emissions = pd.merge(
                    emissions,
                    gpu_spez_df[["gpuName", "powerPerformance"]],
                    left_on="GPU_model",
                    right_on="gpuName",
                    how="left",
                )

                emissions.drop("cpuName", axis=1, inplace=True)
                emissions.drop("gpuName", axis=1, inplace=True)
                emissions["powerPerf"] = emissions["powerPerf"].astype(float)
                emissions["powerPerformance"] = emissions["powerPerformance"].astype(float)
                client_emissions = emissions.loc[emissions["role"] == "client"]
                client_avg_carbon_intensity = round(client_emissions["energy_grid"].mean(), 2)
                factsheet["sustainability"]["avg_carbon_intensity_clients"] = check_field_filled(
                    factsheet,
                    ["sustainability", "avg_carbon_intensity_clients"],
                    client_avg_carbon_intensity,
                    "",
                )
                factsheet["sustainability"]["emissions_training"] = check_field_filled(
                    factsheet,
                    ["sustainability", "emissions_training"],
                    client_emissions["emissions"].sum(),
                    "",
                )
                factsheet["participants"]["avg_dataset_size"] = check_field_filled(
                    factsheet,
                    ["participants", "avg_dataset_size"],
                    client_emissions["sample_size"].mean(),
                    "",
                )

                server_emissions = emissions.loc[emissions["role"] == "server"]
                server_avg_carbon_intensity = round(server_emissions["energy_grid"].mean(), 2)
                factsheet["sustainability"]["avg_carbon_intensity_server"] = check_field_filled(
                    factsheet,
                    ["sustainability", "avg_carbon_intensity_server"],
                    server_avg_carbon_intensity,
                    "",
                )
                factsheet["sustainability"]["emissions_aggregation"] = check_field_filled(
                    factsheet,
                    ["sustainability", "emissions_aggregation"],
                    server_emissions["emissions"].sum(),
                    "",
                )
                GPU_powerperf = (server_emissions.loc[server_emissions["GPU_used"] == True])["powerPerformance"]
                CPU_powerperf = (server_emissions.loc[server_emissions["CPU_used"] == True])["powerPerf"]
                server_power_performance = round(pd.concat([GPU_powerperf, CPU_powerperf]).mean(), 2)
                factsheet["sustainability"]["avg_power_performance_server"] = check_field_filled(
                    factsheet,
                    ["sustainability", "avg_power_performance_server"],
                    server_power_performance,
                    "",
                )

                GPU_powerperf = (client_emissions.loc[client_emissions["GPU_used"] == True])["powerPerformance"]
                CPU_powerperf = (client_emissions.loc[client_emissions["CPU_used"] == True])["powerPerf"]
                clients_power_performance = round(pd.concat([GPU_powerperf, CPU_powerperf]).mean(), 2)
                factsheet["sustainability"]["avg_power_performance_clients"] = clients_power_performance

                factsheet["sustainability"]["emissions_communication_uplink"] = check_field_filled(
                    factsheet,
                    ["sustainability", "emissions_communication_uplink"],
                    factsheet["system"]["total_upload_bytes"]
                    * 2.24e-10
                    * factsheet["sustainability"]["avg_carbon_intensity_clients"],
                    "",
                )
                factsheet["sustainability"]["emissions_communication_downlink"] = check_field_filled(
                    factsheet,
                    ["sustainability", "emissions_communication_downlink"],
                    factsheet["system"]["total_download_bytes"]
                    * 2.24e-10
                    * factsheet["sustainability"]["avg_carbon_intensity_server"],
                    "",
                )

        except JSONDecodeError as e:
            logger.warning(f"{factsheet_file} is invalid")
            logger.error(e)

        f.seek(0)
        f.truncate()
        json.dump(factsheet, f, indent=4)
        f.close()

populate_factsheet_pre_train(data, scenario_name)

Populates the factsheet with values before the training.

Parameters:

Name Type Description Default
data dict

Contains the data from the scenario.

required
scenario_name string

The name of the scenario.

required
Source code in nebula/addons/trustworthiness/factsheet.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def populate_factsheet_pre_train(self, data, scenario_name):
    """
    Populates the factsheet with values before the training.

    Args:
        data (dict): Contains the data from the scenario.
        scenario_name (string): The name of the scenario.
    """

    factsheet_file = os.path.join(dirname, f"files/{scenario_name}/{self.factsheet_file_nm}")

    factsheet_template = os.path.join(dirname, f"configs/{self.factsheet_template_file_nm}")

    if not os.path.exists(factsheet_file):
        shutil.copyfile(factsheet_template, factsheet_file)

    with open(factsheet_file, "r+") as f:
        factsheet = {}

        try:
            factsheet = json.load(f)

            if data is not None:
                logger.info("FactSheet: Populating factsheet with pre training metrics")

                federation = data["federation"]
                n_nodes = int(data["n_nodes"])
                dataset = data["dataset"]
                algorithm = data["model"]
                aggregation_algorithm = data["agg_algorithm"]
                n_rounds = int(data["rounds"])
                attack = data["attacks"]
                poisoned_node_percent = int(data["poisoned_node_percent"])
                poisoned_sample_percent = int(data["poisoned_sample_percent"])
                poisoned_noise_percent = int(data["poisoned_noise_percent"])
                with_reputation = data["with_reputation"]
                is_dynamic_topology = data["is_dynamic_topology"]
                is_dynamic_aggregation = data["is_dynamic_aggregation"]
                target_aggregation = data["target_aggregation"]

                if attack != "No Attack" and with_reputation == True and is_dynamic_aggregation == True:
                    background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. A reputation-based defence with a dynamic aggregation based on the aggregation algorithm {target_aggregation} is used, and the trustworthiness of the project is desired."

                elif attack != "No Attack" and with_reputation == True and is_dynamic_topology == True:
                    background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. A reputation-based defence with a dynamic topology is used, and the trustworthiness of the project is desired."

                elif attack != "No Attack" and with_reputation == False:
                    background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. In addition, the type of attack used against the clients is {attack}, where the percentage of attacked nodes is {poisoned_node_percent}, the percentage of attacked samples of each node is {poisoned_sample_percent}, and the percent of poisoned noise is {poisoned_noise_percent}. No defence mechanism is used, and the trustworthiness of the project is desired."

                elif attack == "No Attack":
                    background = f"For the project setup, the most important aspects are the following: The federation architecture is {federation}, involving {n_nodes} clients, the dataset used is {dataset}, the learning algorithm is {algorithm}, the aggregation algorithm is {aggregation_algorithm} and the number of rounds is {n_rounds}. No attacks against clients are used, and the trustworthiness of the project is desired."

                # Set project specifications
                factsheet["project"]["overview"] = data["scenario_title"]
                factsheet["project"]["purpose"] = data["scenario_description"]
                factsheet["project"]["background"] = background

                # Set data specifications
                factsheet["data"]["provenance"] = data["dataset"]
                factsheet["data"]["preprocessing"] = data["topology"]

                # Set participants
                factsheet["participants"]["client_num"] = data["n_nodes"] or ""
                factsheet["participants"]["sample_client_rate"] = 1
                factsheet["participants"]["client_selector"] = ""

                # Set configuration
                factsheet["configuration"]["aggregation_algorithm"] = data["agg_algorithm"] or ""
                factsheet["configuration"]["training_model"] = data["model"] or ""
                factsheet["configuration"]["personalization"] = False
                factsheet["configuration"]["visualization"] = True
                factsheet["configuration"]["total_round_num"] = n_rounds

                if poisoned_noise_percent != 0:
                    factsheet["configuration"]["differential_privacy"] = True
                    factsheet["configuration"]["dp_epsilon"] = poisoned_noise_percent
                else:
                    factsheet["configuration"]["differential_privacy"] = False
                    factsheet["configuration"]["dp_epsilon"] = ""

                if dataset == "MNIST" and algorithm == "MLP":
                    model = MNISTModelMLP()
                elif dataset == "MNIST" and algorithm == "CNN":
                    model = MNISTModelCNN()
                elif dataset == "Syscall" and algorithm == "MLP":
                    model = SyscallModelMLP()
                else:
                    model = CIFAR10ModelCNN()

                factsheet["configuration"]["learning_rate"] = model.get_learning_rate()
                factsheet["configuration"]["trainable_param_num"] = model.count_parameters()
                factsheet["configuration"]["local_update_steps"] = 1

        except JSONDecodeError as e:
            logger.warning(f"{factsheet_file} is invalid")
            logger.error(e)

        f.seek(0)
        f.truncate()
        json.dump(factsheet, f, indent=4)
        f.close()