nebuladataset
NebulaDataset
¶
Bases: Dataset
, ABC
Abstract class for a partitioned dataset.
Classes inheriting from this class need to implement specific methods for loading and partitioning the dataset.
Source code in nebula/core/datasets/nebuladataset.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
|
balanced_iid_partition(dataset)
¶
Partition the dataset into balanced and IID (Independent and Identically Distributed) subsets for each client.
This function divides a dataset into a specified number of subsets (federated clients), where each subset has an equal class distribution. This makes the partition suitable for simulating IID data scenarios in federated learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
list
|
The dataset to partition. It should be a list of tuples where each tuple represents a data sample and its corresponding label. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary where keys are client IDs (ranging from 0 to partitions_number-1) and values are lists of indices corresponding to the samples assigned to each client. |
The function ensures that each class is represented equally in each subset. The partitioning process involves iterating over each class, shuffling the indices of that class, and then splitting them equally among the clients. The function does not print the class distribution in each subset.
Example usage
federated_data = balanced_iid_partition(my_dataset)
This creates federated data subsets with equal class distributions.¶
Source code in nebula/core/datasets/nebuladataset.py
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
generate_iid_map(dataset, plot=False)
abstractmethod
¶
Create an iid map of the dataset.
Source code in nebula/core/datasets/nebuladataset.py
96 97 98 99 100 101 |
|
generate_non_iid_map(dataset, partition='dirichlet', plot=False)
abstractmethod
¶
Create a non-iid map of the dataset.
Source code in nebula/core/datasets/nebuladataset.py
89 90 91 92 93 94 |
|
get_local_test_labels()
¶
Get the labels of the local test set based on the indices map.
Source code in nebula/core/datasets/nebuladataset.py
119 120 121 122 123 124 125 |
|
get_test_labels()
¶
Get the labels of the test set based on the indices map.
Source code in nebula/core/datasets/nebuladataset.py
111 112 113 114 115 116 117 |
|
get_train_labels()
¶
Get the labels of the training set based on the indices map.
Source code in nebula/core/datasets/nebuladataset.py
103 104 105 106 107 108 109 |
|
homo_partition(dataset)
¶
Homogeneously partition the dataset into multiple subsets.
This function divides a dataset into a specified number of subsets, where each subset is intended to have a roughly equal number of samples. This method aims to ensure a homogeneous distribution of data across all subsets. It's particularly useful in scenarios where a uniform distribution of data is desired among all federated learning clients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The dataset to partition. It should have 'data' and 'targets' attributes. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary where keys are subset indices (ranging from 0 to partitions_number-1) and values are lists of indices corresponding to the samples in each subset. |
The function randomly shuffles the entire dataset and then splits it into the number
of subsets specified by partitions_number
. It ensures that each subset has a similar number
of samples. The function also prints the class distribution in each subset for reference.
Example usage
federated_data = homo_partition(my_dataset)
This creates federated data subsets with homogeneous distribution.¶
Source code in nebula/core/datasets/nebuladataset.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
initialize_dataset()
abstractmethod
¶
Initialize the dataset. This should load or create the dataset.
Source code in nebula/core/datasets/nebuladataset.py
82 83 84 85 86 87 |
|
percentage_partition(dataset, percentage=20)
¶
Partition a dataset into multiple subsets with a specified level of non-IID-ness.
This function divides a dataset into a specified number of subsets (federated clients), where each subset has a different class distribution. The class distribution in each subset is determined by a specified percentage, making the partition suitable for simulating non-IID (non-Independently and Identically Distributed) data scenarios in federated learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The dataset to partition. It should have 'data' and 'targets' attributes. |
required |
percentage
|
int
|
A value between 0 and 100 that specifies the desired level of non-IID-ness for the labels of the federated data. This percentage controls the imbalance in the class distribution across different subsets. |
20
|
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary where keys are subset indices (ranging from 0 to partitions_number-1) and values are lists of indices corresponding to the samples in each subset. |
The function ensures that the number of classes in each subset varies based on the selected percentage. The partitioning process involves iterating over each class, shuffling the indices of that class, and then splitting them according to the calculated subset sizes. The function also prints the class distribution in each subset for reference.
Example usage
federated_data = percentage_partition(my_dataset, percentage=20)
This creates federated data subsets with varying class distributions based on¶
a percentage of 20.¶
Source code in nebula/core/datasets/nebuladataset.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
plot_all_data_distribution(dataset, partitions_map)
¶
Plot all of the data distribution of the dataset according to the partitions map provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
The dataset to plot (torch.utils.data.Dataset). |
required | |
partitions_map
|
The map of the dataset partitions. |
required |
Source code in nebula/core/datasets/nebuladataset.py
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
|
plot_data_distribution(dataset, partitions_map)
¶
Plot the data distribution of the dataset.
Plot the data distribution of the dataset according to the partitions map provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
The dataset to plot (torch.utils.data.Dataset). |
required | |
partitions_map
|
The map of the dataset partitions. |
required |
Source code in nebula/core/datasets/nebuladataset.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
unbalanced_iid_partition(dataset, imbalance_factor=2)
¶
Partition the dataset into multiple IID (Independent and Identically Distributed) subsets with different size.
This function divides a dataset into a specified number of IID subsets (federated clients), where each subset has a different number of samples. The number of samples in each subset is determined by an imbalance factor, making the partition suitable for simulating imbalanced data scenarios in federated learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
list
|
The dataset to partition. It should be a list of tuples where each tuple represents a data sample and its corresponding label. |
required |
imbalance_factor
|
float
|
The factor to determine the degree of imbalance among the subsets. A lower imbalance factor leads to more imbalanced partitions. |
2
|
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary where keys are client IDs (ranging from 0 to partitions_number-1) and values are lists of indices corresponding to the samples assigned to each client. |
The function ensures that each class is represented in each subset but with varying proportions. The partitioning process involves iterating over each class, shuffling the indices of that class, and then splitting them according to the calculated subset sizes. The function does not print the class distribution in each subset.
Example usage
federated_data = unbalanced_iid_partition(my_dataset, imbalance_factor=2)
This creates federated data subsets with varying number of samples based on¶
an imbalance factor of 2.¶
Source code in nebula/core/datasets/nebuladataset.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|