dualagg
ContrastiveLoss
¶
Bases: Module
Contrastive loss function.
Source code in nebula/core/models/cifar10/dualagg.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
forward(local_out, global_out, historical_out, labels)
¶
Calculates the contrastive loss between the local output, global output, and historical output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
local_out
|
Tensor
|
The local output tensor of shape (batch_size, embedding_size). |
required |
global_out
|
Tensor
|
The global output tensor of shape (batch_size, embedding_size). |
required |
historical_out
|
Tensor
|
The historical output tensor of shape (batch_size, embedding_size). |
required |
labels
|
Tensor
|
The ground truth labels tensor of shape (batch_size,). |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: The contrastive loss value. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input tensors have different shapes. |
Notes
- The contrastive loss is calculated as the difference between the mean cosine similarity of the local output with the historical output and the mean cosine similarity of the local output with the global output, multiplied by a scaling factor mu.
- The cosine similarity values represent the similarity between the corresponding vectors in the input tensors. Higher values indicate greater similarity, while lower values indicate less similarity.
Source code in nebula/core/models/cifar10/dualagg.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
DualAggModel
¶
Bases: LightningModule
Source code in nebula/core/models/cifar10/dualagg.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
adapt_state_dict_for_model(state_dict, model_prefix)
¶
Adapt the keys in the provided state_dict to match the structure expected by the model.
Source code in nebula/core/models/cifar10/dualagg.py
455 456 457 458 459 460 461 462 463 464 465 466 |
|
configure_optimizers()
¶
Source code in nebula/core/models/cifar10/dualagg.py
351 352 353 354 355 356 357 358 359 |
|
forward(x, mode='local')
¶
Forward pass of the model.
Source code in nebula/core/models/cifar10/dualagg.py
340 341 342 343 344 345 346 347 348 349 |
|
get_global_model_parameters()
¶
Get the parameters of the global model.
Source code in nebula/core/models/cifar10/dualagg.py
468 469 470 471 472 |
|
global_load_state_dict(state_dict)
¶
Load the given state dictionary into the global model. Args: state_dict (dict): The state dictionary to load into the global model.
Source code in nebula/core/models/cifar10/dualagg.py
435 436 437 438 439 440 441 442 443 |
|
historical_load_state_dict(state_dict)
¶
Load the given state dictionary into the historical model. Args: state_dict (dict): The state dictionary to load into the historical model.
Source code in nebula/core/models/cifar10/dualagg.py
445 446 447 448 449 450 451 452 453 |
|
log_metrics_by_epoch(phase, print_cm=False, plot_cm=False, mode='local')
¶
Log all metrics at the end of an epoch for the given phase. Args: phase (str): One of 'Train', 'Validation', or 'Test' :param phase: :param plot_cm:
Source code in nebula/core/models/cifar10/dualagg.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
print_summary()
¶
Print a summary of local, historical and global models to check if they are the same.
Source code in nebula/core/models/cifar10/dualagg.py
474 475 476 477 478 479 480 481 482 483 |
|
process_metrics(phase, y_pred, y, loss=None, mode='local')
¶
Calculate and log metrics for the given phase. Args: phase (str): One of 'Train', 'Validation', or 'Test' y_pred (torch.Tensor): Model predictions y (torch.Tensor): Ground truth labels loss (torch.Tensor, optional): Loss value
Source code in nebula/core/models/cifar10/dualagg.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
save_historical_model()
¶
Save the current local model as the historical model.
Source code in nebula/core/models/cifar10/dualagg.py
428 429 430 431 432 433 |
|
test_step(batch, batch_idx)
¶
Test step for the model. Args: batch: batch_idx:
Returns:
Source code in nebula/core/models/cifar10/dualagg.py
412 413 414 415 416 417 418 419 420 421 |
|
training_step(batch, batch_id)
¶
Training step for the model. Args: batch: batch_id:
Returns:
Source code in nebula/core/models/cifar10/dualagg.py
380 381 382 383 384 385 386 387 388 389 |
|
validation_step(batch, batch_idx)
¶
Validation step for the model. Args: batch: batch_idx:
Returns:
Source code in nebula/core/models/cifar10/dualagg.py
396 397 398 399 400 401 402 403 404 405 |
|